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MULTI-LAYER PERCEPTRONS

(AS ONE KIND OF ARTIFICIAL NEURAL NETWORKS)
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I Multi-Layer Perceptrons (MLP)

« MLPs are highly parameterized, non-linear functions

firp i R — RY

fidr @@
parameter vector, (input-) output
weight vector pattern

- -.-
-

/example: classification of images ,_\
feature vector, I, |

— -
L e.g. vector of all gray values in image e

— 1-of-g-vector that models probabilities for each of q possible
Y categories, e.g. smiley is happy/sad/frustrated
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I Internal Structure of MLPs

. perceptron
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linear combination of non linear
iInputs and weights activation function

Y = fact (wO + f: wixi)
=1
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sigmoidal
activation

hyperbolic ............
tangent

RelLU
activation

y = tanh(x)

y = max{0,x} y
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I Internal Structure of MLPs

- layered arrangement of many perceptrons

L1T— 3 2V 2|V 2| Y1
L2 s 5| 5| Y2
Tnl _ Jspy_ Jsyy  Jspy 3 Yq

- Y~ Y~
input 1. hidden 2. hidden 3. hidden output
layer layer layer layer layer

— network structure creates set of highly nonlinear function
— many weights
— deep architectures: typically >5 hidden layers
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I Training of MLPs

« how do we determine weights of MLP?
— basic idea: minimize error for training examples

35(1), A1)

E : training
RO ONE It
'~

iInput desired output
pattern (ground truth)

p
—solve mzmmzze Z err(fMLP(g;(J)) g(ﬁ)

for appropriate error measure err
—algorithm: gradient descent (backpropagation)
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I Gradient Descent (Backpropagation)

« goal:
mingﬁmize g(w) with g(w) = Z err(f]\lgLP(f(j))’t_(jU
j=1
« algorithm:
1. initialize weights w randomly with small numbers
2. calculate gradient 39(26)
3. update weights  § <« w0 — ga%(?) with small learning rate € > O
4. goto 2 until stopping criterion reacrtlued g —_

e Improvements: ;

N

—discussed later QQ ,>/

>
w
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I Training MLPs (traditional methods)

« problems with traditional training methods
—too many weight, too few training examples
—too slow
—numerical problems, local minima
# overfitting, underfitting, insufficient generalization

« traditional techniques to overcome problems| ==
—regularization (e.g. early stopping, weight
decay, Bayesian learning)
— preprocessing of patterns, feature extraction,
reduction of dimensionality
—choose smaller MLPs, less layers,
less hidden neurons, network pruning

30 Output
Units

—replace neural networks by other methods ALVINN-architecture
taken from: D. A. Pomerleau,
(e_g_ SVMs boosting etc_) ,Neural network perception for

mobile robot guidance®, 1993
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I Deep Learning

» what is different in Deep Learning?
—larger training sets (millions instead of hundreds)

— more powerful computers, parallel implementations on multi-core
CPUs and GPUs

— special network structures
« autoencoders
« convolutional networks
 recurrent networks/LSTM
 (deep belief networks/restricted Boltzmann machines)

— weight sharing

— layer-wise learning

— dropout

—learning of useful features
—learning from unlabeled examples
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I Learning of Features

* Observation:
— many pixels do not provide much information
—neighboring pixels are highly correlated

« example: smileys

- —_ margin areas are
jui [ .
-~ e Irrelevant
o K
Il I! — pixels inside are
l. "— highly correlated
lh - . »

« how can we seperate relevant information form irrelevant
iInformation?
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I Autoencoder

« MLP with such a structure

n inputs k<n hidden n outputs
perceptrons
. . . P - : N 2
- learn identity function  minimize > (ffj,p(31)) — 30))
w .
=1

= hidden layer must compress image content
kind of neural principal component analysis
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I Stacked Autoencoders

* Incremental training of multi-layered autoencoders
1. train autoencoder with single hidden layer

\ /—>
—
/ \> train weights of

these connections

n K, n
2. extend autoencoder by additional hidden layer —

unchanged from
previous step

keep weights of
/ these connections

\>/
— T

n K, K, K, n
3. repeat process analogously to add further hidden layers
‘ compression of information increases from layer to layer
non-linear, multi-layered principal component analysis

-\\.](IT mrt Lecture in Machine Vision - 12
Karlsruhe Insti of Technology

tttttttt



I Stacked Autoencoders for Classification

1. train stacked autoencoder

2. replace decoder network by fully-
connected classifier network

3. train classifier network

4. train all weights of encoder and
classifier network for a few
iterations

advantages:

~\y

N\
A

encoder

N

N

/
< 7
N\
N\
decoder
> 11—
[
classifier

» stacked autoencoder can be trained with unlabeled examples

* Iincremental training achieves better results
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I Local Receptive Fields

» local receiptive fields for structured data

- 2 I

\fully connected Iayer/

-~

~

& local receptive fields /

Local receptive fields force the network to process information locally.

example: local features for images

input layer:
gray values for
each pixel
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L 2/ BN
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e 00 00

feature layer:
e.g. edge feature
for each pixel
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I Weight Sharing

e can we generate the same local features for all pixels?
— weight sharing: binding the weights of different perceptrons
— convolutional layers: binding the weights of all perceptrons of one layer

[ I /BN BN
® 0606 00
o 0 06 00
o 0o 0o 00
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I Multi-Channel Feature Layers

* In each hidden layer one would like to compute several
different features for each pixel — mulit-channel layers

I-th layer
k channels

(i+1)-th layer
n channels

convolution kernels are tensors of size h X w X k
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I Max-Pooling

« pooling layers are designed to aggregate information spatially
« Max-Pooling: calculate maximum from local receptive field

maz{...}

max{...}
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I Convolutional Networks

« Convolutional Networks (CNNs) combine

— convolutional layers
— pooling layers
— fully connected classifier network

—>
™ — W —
b S mazx >k max %k
—_ / —>

—| |7

convolutional and pooling layers
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classifier
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I Example: AlexNet

« A. Krizhevsky, I. Sutskever, G. Hinton, ,ImageNet Classification with
Deep Convolutional Neural Networks®, NIPS, 2012

— classification of images, 1000 categories

— data set: 1,2 millions of images
— apporach: convolutional network, 60 millions of weights

—
%
—

—>
>k
—>

|

max

[l

|

222N

>
>
>
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—>
>
>
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convolutional and pooling layers

classifier
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I Example: AlexNet

* results on test set
— top-1-error: 37%
— top-5-error: 17%

 newer approaches:

— top-5-error: <5%
(better than humans)
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combin

accordion

abacus
abacus Slug hen|
typewriter keyboard zucchini cock
pencil sharpener space bar ground beetle cocker spaniel
switch| | computer keyboard common newt partridge
ation lock English setter

water snake

A

chad nautilus

tape playe

planetarium

tiger lampshade cellular telephone planetarium

] tiger cat throne slot dome

tabby goblet reflex camera moscgue

boxer table lamp dial telephone radio telescope

Saint Bernard hamper iPod steel arch bridge
Taken from:

http://image-net.org/challenges/LSVRC/2012/supervision.pdf
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I Example: AlexNet

« results on test set
— top-1-error: 37%
— top-5-error: 17%

 newer approaches:

— top-5-error: <5%
(better than humans)
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Eumpean ire

n fire salamander

eathe =

television

sliding door

‘wombat tiger Eu Afriican crocodile
Norwegian elkhound tiger cat spotted salamander Gila monster
'J wild boar H jaguar common newt hggarhead
wallaby lynx long-horned beetle i mud turtie

koala leopard box turtle

Ieatherhack turtle

seat belt television sliding door
ice lolly || microwave shoji wallaby
hotdog monitor window shade wood rabbit
burrito screen window screen Lakeland terrier
Band Aid car mirror four-poster kit fox
Taken from:

http://image-net.org/challenges/LSVRC/2012/supervision.pdf
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I Convolutional Networks

« which features are learned in hidden layers?
— 1. layer: gray level edges, color edges, blobs

Taken from:
http://image-net.org/challenges/LSVRC/2012/supervision.pdf
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I Convolutional Networks

« which features are learned in hidden layers?
® 2. layer: corners, round structures
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Taken from:

M.D. Zeller, R. Fergus, ,Visualizing and Understanding Convolutional Neural Networks*,
arXiv:1311.2901 v2, 13. Nov. 2013
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I Convolutional Networks

« which features are learned in hidden layers?

® 3. layer: shapes, gratings

Taen frm:
M.D. Zeller, R. Fergus, ,Visualizing and Understanding Convolutional Neural Networks*,
arXiv:1311.2901 v2, 13. Nov. 2013
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I Convolutional Networks

« which features are learned in hidden layers?

® 4. layer: textured geometries

Taken from:
M.D. Zeller, R. Fergus, ,Visualizing and Understanding Convolutional Neural Networks*,
arXiv:1311.2901 v2, 13. Nov. 2013
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I Convolutional Networks

« which features are learned in hidden layers?

® 5. layer: objects

Taken from:
M.D. Zeller, R. Fergus, ,Visualizing and Understanding Convolutional Neural Networks*,
arXiv:1311.2901 v2, 13. Nov. 2013
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I Convolutional Networks

« From layer to layer...
— features become more and more geometrically complex
— features become more and more independent of position
— features become more and more inpendent of pattern size
— features become more and more specific

tttttttt
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APPLICATION EXAMPLES
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I Scene Labeling

« segment the image
— classify every pixel
— autoencoder/decoder structure

forward /inference

<€

backward/learning

[3‘0%6 b:ng 21

/fb‘%b‘ 20 o ff)b

21
taken from: J. Long, E. Shelhamer, T. Darrell, ,Fully Convolutional Networks

for Semantic Segmentation“, CVPR, 2015
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I Scene Labeling

output of CNN ground truth

taken from: J. Long, E. Shelhamer, T. Darrell, ,Fully Convolutional Networks
for Semantic Segmentation“, CVPR, 2015
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I Scene Labeling

B pedestrian H road grass traffic sign B building
W vehicle m sidewalk M pole m traffic light m sky

best performance on Cityscapes dataset > 80% accuracy
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taken from: J. Uhrig, M. Cordts, U. Franke, T. Brox, Pixel-level
encoding and depth layering for instance-level semantic
segmentation, Germ. Conf. on Pattern Recognition, 2016/
provided by Nick Schneider, Daimler AG
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taken from: J. Uhrig, M. Cordts, U. Franke, T. Brox, Pixel-level
encoding and depth layering for instance-level semantic
segmentation, Germ. Conf. on Pattern Recognition, 2016/
provided by Nick Schneider, Daimler AG
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I Instance Segmentation

video provided by Nick Schneider, Daimler AG

ﬂ(IT mrt Lecture in Machine Vision - 34
Karlsruhe Institute of Technology



ECHNIQUES FOR DEEP LEARNING
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I Principles for Training MLPs

« There's no data like more data!
— remind slides 10/60-62 on data tuning

« rigorous validation of training process

* regularisation of training process
— early stopping
— weight decay/L2 regularisation
— dropout
— stochastic gradient descent
— multi task learning
— use pretrained networks

« reuse of practical knowledge (of others)
— successful network structures
— successful training processes
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I Typical Progression of Error during Training

empirical
error

training time
Early Stopping:
stop training here

Why does early stopping work as regularisation technique?
» early stopping prefers small weights
« small weights means little non-linearity (see next slide)

/
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I Regularisation by Small Weights

« assume perceptron with small absolute weights

Y = fact (wO . n i wixi)
=

11—

/sigmoidal/hyperbolic \ / RelLu activation \

tangent activation

>
e 0 if wg <O
wo-I-Z;-”zl wies;  Uf wg > 0O

\\y%w0+i§wi$i / \\

— small weights foster linear behavior of perceptrons
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I Regularisation by Small Weights

« assume fully connected network with linear activation

L1 2 2|7 2 2|7 <15 g 2 2|7 Y1
L2 / )X Vd ) 4 Y2
AN D) g SR P g SR D) g SEEERGER RS D1 Yq

linear linear linear

mapping mapping mapping mapping

linear mapping independent of number of layers

— linear behavior of perceptrons reduces non-linear expressiveness
— regularisation
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I Weight Decay / L2-Regularisation

 extend goal of training by regulatisation term

p . .
minimize Y err(f]\"“‘/fmp(f@)),f(ﬂ)—k)\- > wZQ
w j=1 weights i
\ J \ )
Y Y
1st goal: minimize error 2"d goal: prefer
on training set small weights

(regularisation)

A > O is aparameter of the training
algorithm that has to be chosen
by trial and error
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I Dropout

e regularization by randomly switching off perceptrons during
training

\/

L1 2 7

ke . ¢
L2 ”“"(‘Q?ig 1\ ’bv ?

@, A
NN AN E et
Q Q X XX
o'

2

2 % Y1

Ln

« dropout forces the neural network to store relevant
iInformation in a distributed way

« dropout reduces overfitting
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I Modifications of Gradient Descent

« stochastic gradient descent

o =(7)y #(5)
M P Z t
W W—€e- o err (fMLP(m ); ) f all training examples

QD

w

F o @ =)y 7)Y ]
with S C {1,...,p}

advantages:

—speed up

—a little bit less overfitting

SKIT mrd

tttttttt

calculate gradient from

calculate gradient from
subset of all training
examples. Subsets typically

) cacle through all examples
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I Modifications of Gradient Descent

» gradient descent with momentum

> err(f]\'“}Lp(f(j)), t_(j)>
JeS

s,
AU?(-O{'A’(B—S'—_’
ow
W +— w+ Aw

with o > 0 a parameter that controls consistency of subsequent steps

advantages:
—speed up In flat areas
—less zig zagging

-\\.](IT mrt Lecture in Machine Vision - 43
Karlsruhe Insti of Technology

tttttttt



I Multi Task Learning

« Idea: learn several related tasks in a single network
example: scene labeling + instance labeling + depth estimation

—> output layer
> 1sttask
R —

. —  output layer
2nd task
—_—> —>
1 -
—> output layer
5  3dtask
. task-specific
input joint feature layers e e
layer
advantages:

— force network to develop common features in hidden layer
—reduce overfitting to a single task
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I Usage of Pre-Trained Feature Networks

* Idea: reuse pre-trained network

output layer other
task, e.g. ImageNet
—> classification
> >
—
—
—> >
—
output layer new
- task
¢ | task-specific
input EACIENELS classifiers
layer

train other task with large training set
throw away classification layers of other task
create new classification layers for new task

train weights of new classification layer while preserving feature
layers
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I Popular Architectures

_ layers kernel sizes reference

LeNet5 (1998)

(historical)

AlexNet (2012)
VGG (2014)
ResNet (2015)

GoogLeNet (2015)

AT mre
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2 conv. layers
2 max pooling layers
2 fully conn. layers

5 conv. layers
3 max pooling layers
3 fully conn. layers

13 conv. layers
3 max pooling layers
3 fully conn. layers

152 conv. layers
(residual blocks)
2 pooling layers

9 inception blocks

3x3 — 11x11

3x3 (1x1)

3x3 (7x7)

1x1, 3x3, 5x5

Y. LeCun, L. Bottou, Y. Bengio,
P. Haffner. Gradient-based
learning applied to document
recognition. Proc. of the IEEE,
1998

A. Krizhevsky, |. Sutskever, G. E.
Hinton. Imagenet classification
with deep convolutional neural
networks. NIPS 2012

K. Simonyan, A. Zisserman. Very
deep convolutional networks for
large-scale image recognition.
arXiv 2014

K. He, X. Zhang, S. Ren, J. Sun.
Deep residual learning for image
recognition. CVPR 2016

C. Szegedy, et al. Going deeper
with convolutions. CVPR 2015
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SUMMARY: DEEP LEARNING
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I Pattern Recognition: the Complete Picture

featur.e [ e —— prediction c
extraction

ensemble

features classifiers ensembles generalization
= smart (specific) = SVM = free ensemble | = validation
= HOG = threshold = bagging = cross-validation
= Haar = decision tree = boosting = data tuning
* LBP = cascade = decision forest | = early stopping
= neural features | = neural network | = multi-class = randomization
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I Pattern Recognition: the Complete Picture cont.

features

= smart (specific)

= HOG
= Haar
= LBP

= neural features

AT nrt
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« neural features

— generated by autoencoder networks
— generated by convolutional networks

— neural features often perform better than
“traditional” features (e.g. HOG) even if
trained on different images
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I Pattern Recognition: the Complete Picture cont.

classifiers .
- artificial neural network
= SVM — highly parameterized
= threshold — nonlinear functions
= decision tree — build out of simple blocks (perceptrons)
= cascade — layered layout

= neural network

L1 b1 Vs E= 1 Vs 5§;>§Z e = i1V Y1

//
Tn/ sl sls s o 1 g/ Yq
input 1. hidden 2. hidden 3. hidden output
layer layer layer layer layer
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I Pattern Recognition: the Complete Picture cont.

generalization

early stopping
= validation — monitor validation error
= cross-validation — stop training at minimum

= data tuning weight decay/L2-regularisation

= early st(_)ppl_ng — preference for small weights
= randomization — punish nonlinearity

dropout
— randomly switch off percpetrons
— foster distributed representation

multi task learning

— train related tasks with same network
— share feature layers

reuse of layers and networks

— reuse trained feature layers

— replace and retrain classification layers
— little retraining of all weights
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I References

« books and articles

— |. Goodfellow, Y. Bengio, A. Courville. Deep Learning. MIT Press, 2016.

online: http://www.deeplearningbook.org
extensive description of deep learning techniques

—Y. LeCun, Y. Bengio, G. E. Hinton. Deep Learning. nature 521, pp. 436-444,
2015

brief overview paper, not very deep but good to get a rough idea

— L. Deng, D. Yu. Deep learning: methods and applications. Foundations and
Trends in Signal Processing 7:3—4, pp. 197-387, 2014. online:
http://ftp.nowpublishers.com/article/Details/S1G-039

extensive overview and introduction, focus on natural language processing

— Y. Bengio. Learning Deep Architectures for Al. Foundations and Trends in
Machine Learning 2:1, pp. 1-127, 2009. online:
http://www.nowpublishers.com/article/Details/MAL-006

extensive introduction and overview, does not contain newer developments
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I References

« toolboxes
— Caffe (UC Berkeley), http://caffe.berkeleyvision.org

simple to use deep learning engine, provides pretrained networks, good for beginners

— Tensorflow (Google), https://www.tensorflow.org
deep learning engine that allows more extensions of existing approaches, good for experienced persons
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