

Machine Vision

Chapter 12: Deep Learning

Dr. Martin Lauer Institut für Messund Regelungstechnik

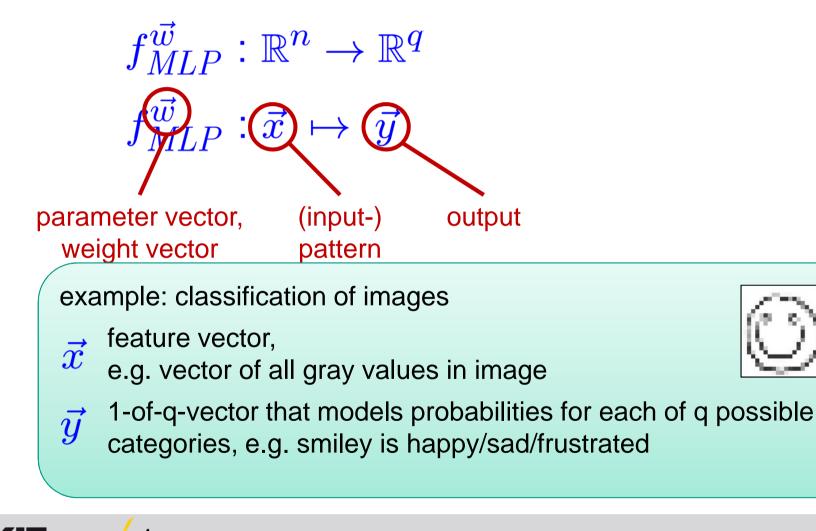
MULTI-LAYER PERCEPTRONS (AS ONE KIND OF ARTIFICIAL NEURAL NETWORKS)

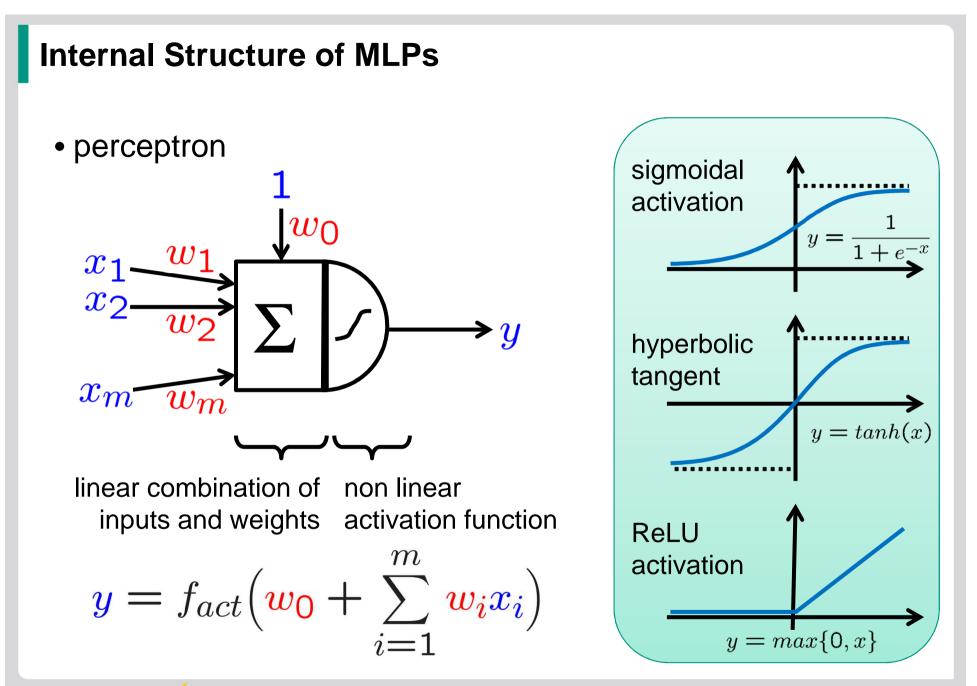
Lecture in Machine Vision - 2

Multi-Layer Perceptrons (MLP)

mrt

• MLPs are highly parameterized, non-linear functions

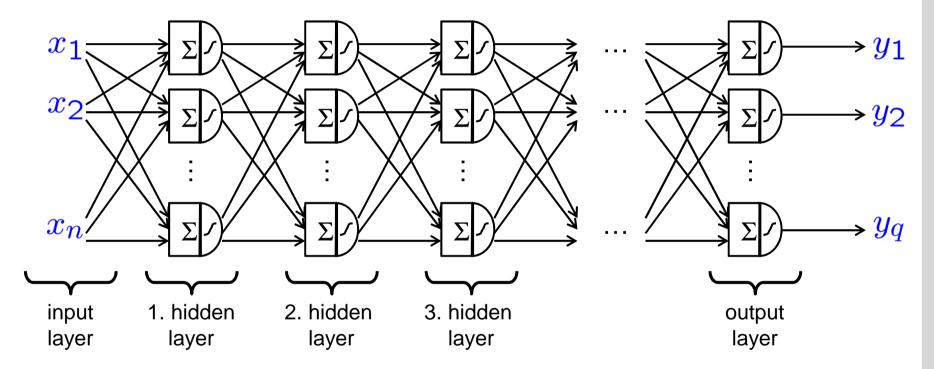




Lecture in Machine Vision - 4

Internal Structure of MLPs

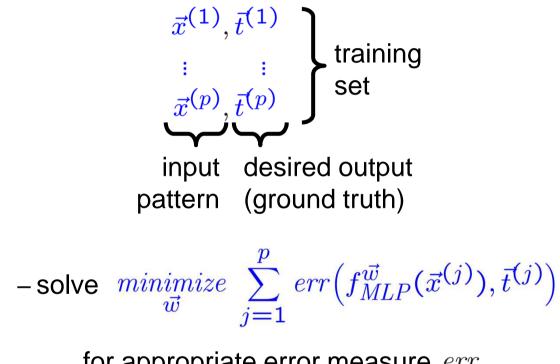
• layered arrangement of many perceptrons



- network structure creates set of highly nonlinear function
- many weights
- deep architectures: typically >5 hidden layers

Training of MLPs

- how do we determine weights of MLP?
 - basic idea: minimize error for training examples



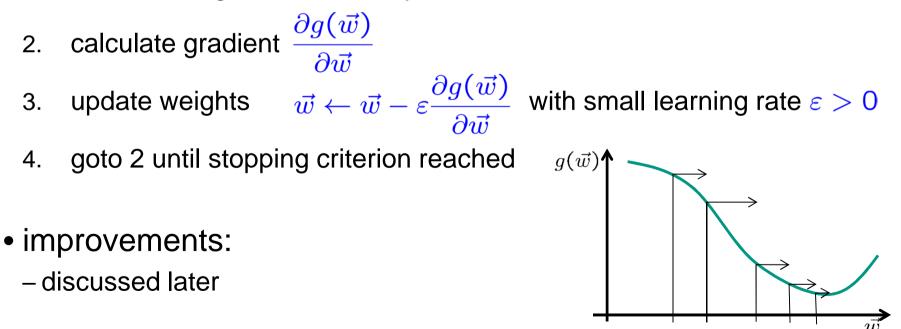
for appropriate error measure *err* – algorithm: gradient descent (backpropagation)

Gradient Descent (Backpropagation)

• goal:

$$\underset{\vec{w}}{\textit{minimize } g(\vec{w})} \quad \text{with } g(\vec{w}) := \sum_{j=1}^{p} err(f_{MLP}^{\vec{w}}(\vec{x}^{(j)}), \vec{t}^{(j)})$$

- algorithm:
 - 1. initialize weights \vec{w} randomly with small numbers



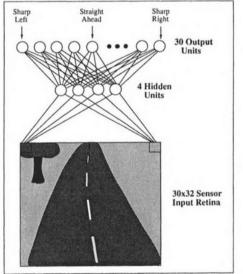
Training MLPs (traditional methods)

- problems with traditional training methods
 - too many weight, too few training examples
 - too slow
 - numerical problems, local minima

overfitting, underfitting, insufficient generalization

- traditional techniques to overcome problems
 - regularization (e.g. early stopping, weight decay, Bayesian learning)
 - preprocessing of patterns, feature extraction, reduction of dimensionality
 - choose smaller MLPs, less layers,
 - less hidden neurons, network pruning
 - replace neural networks by other methods

(e.g. SVMs, boosting, etc.)



ALVINN-architecture taken from: D. A. Pomerleau, "Neural network perception for mobile robot guidance", 1993

Lecture in Machine Vision - 8

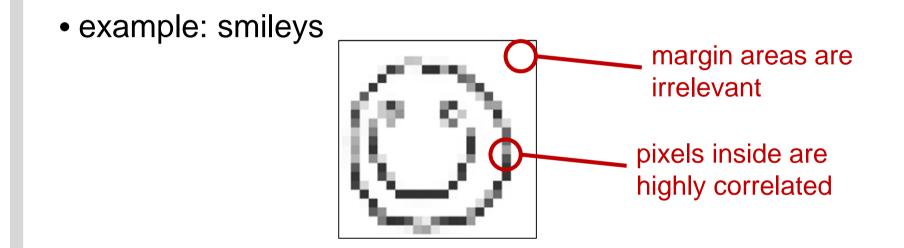
mrt

Deep Learning

- what is different in Deep Learning?
 - larger training sets (millions instead of hundreds)
 - more powerful computers, parallel implementations on multi-core CPUs and GPUs
 - special network structures
 - autoencoders
 - convolutional networks
 - recurrent networks/LSTM
 - (deep belief networks/restricted Boltzmann machines)
 - ...
 - weight sharing
 - layer-wise learning
 - dropout
 - learning of useful features
 - learning from unlabeled examples

Learning of Features

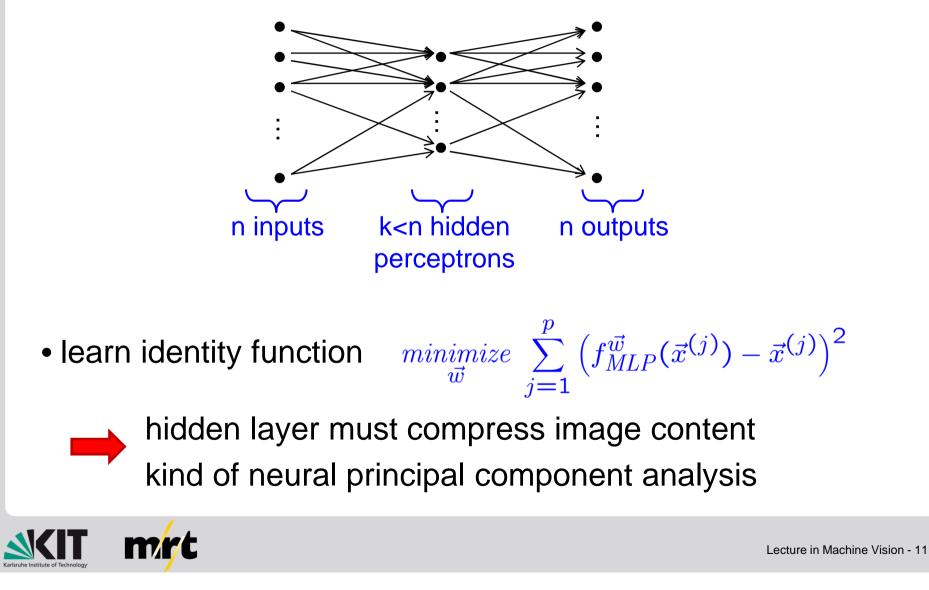
- observation:
 - many pixels do not provide much information
 - neighboring pixels are highly correlated



 how can we seperate relevant information form irrelevant information?

Autoencoder

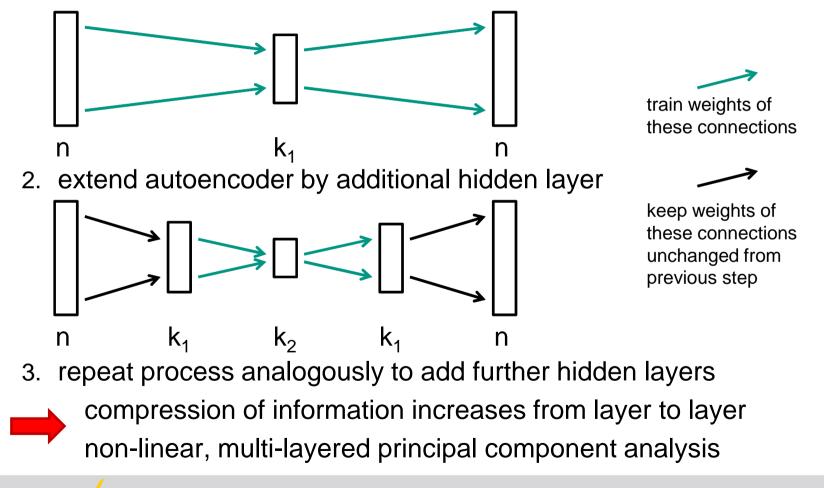
• MLP with such a structure



Stacked Autoencoders

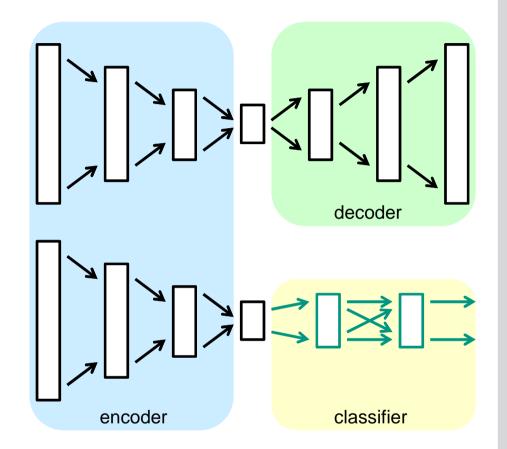
mrt

- incremental training of multi-layered autoencoders
 - 1. train autoencoder with single hidden layer



Stacked Autoencoders for Classification

- 1. train stacked autoencoder
- 2. replace decoder network by fullyconnected classifier network
- 3. train classifier network
- 4. train all weights of encoder and classifier network for a few iterations



advantages:

- stacked autoencoder can be trained with unlabeled examples
- incremental training achieves better results

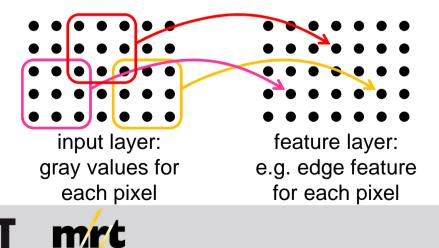
Local Receptive Fields

• local receiptive fields for structured data



Local receptive fields force the network to process information locally.

example: local features for images



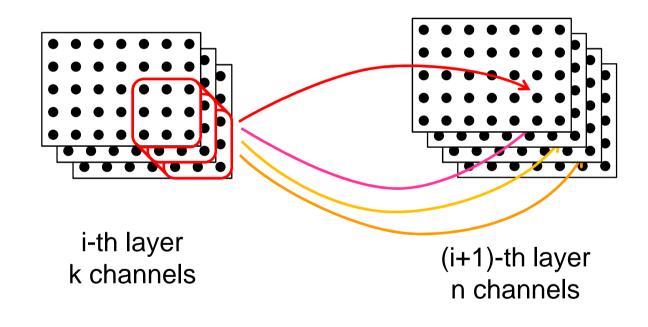
Weight Sharing

- can we generate the same local features for all pixels?
 - weight sharing: binding the weights of different perceptrons
 - convolutional layers: binding the weights of all perceptrons of one layer

$$L_{i+1} = f_{act} (L_i * \frac{w_1 w_2 w_3}{w_4 w_5 w_6} + w_0)$$

Multi-Channel Feature Layers

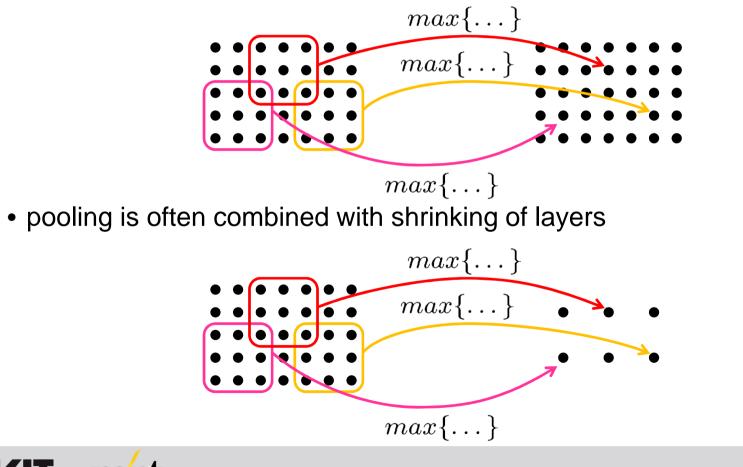
• in each hidden layer one would like to compute several different features for each pixel \rightarrow <u>mulit-channel layers</u>



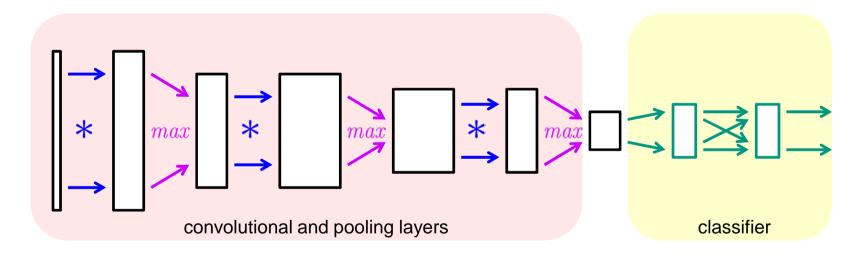
convolution kernels are tensors of size h imes w imes k

Max-Pooling

- pooling layers are designed to aggregate information spatially
- Max-Pooling: calculate maximum from local receptive field

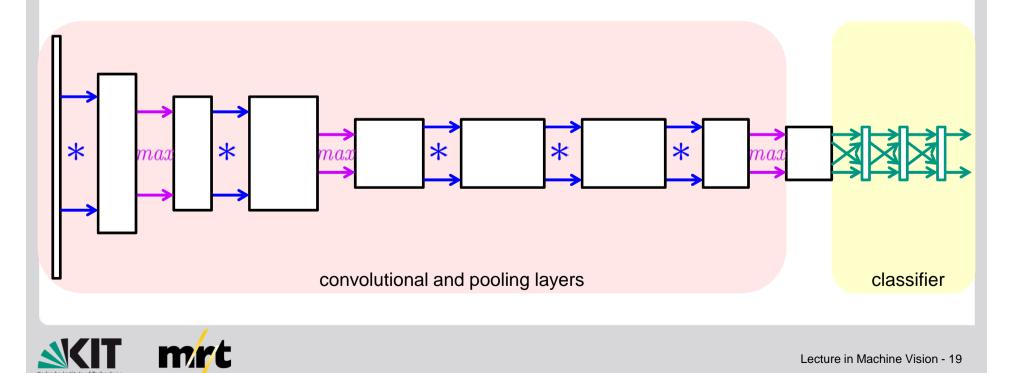


- Convolutional Networks (CNNs) combine
 - convolutional layers
 - pooling layers
 - fully connected classifier network



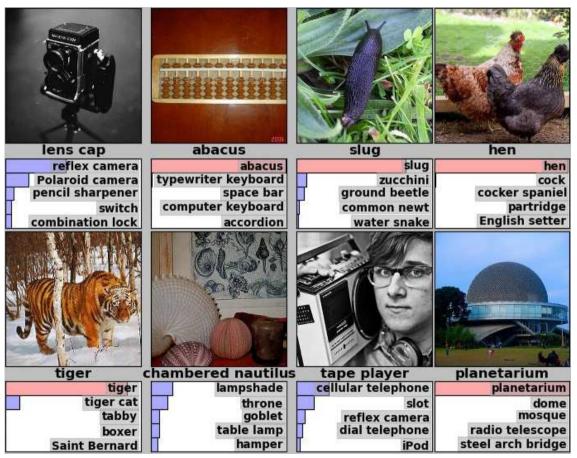
Example: AlexNet

- A. Krizhevsky, I. Sutskever, G. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS, 2012
 - classification of images, 1000 categories
 - data set: 1,2 millions of images
 - apporach: convolutional network, 60 millions of weights



Example: AlexNet

- results on test set
 - top-1-error: 37%
 - top-5-error: 17%
- newer approaches:
 - top-5-error: <5%(better than humans)

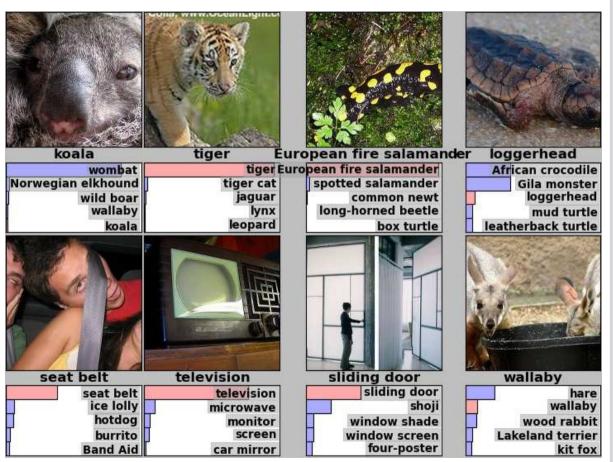


Taken from:

http://image-net.org/challenges/LSVRC/2012/supervision.pdf

Example: AlexNet

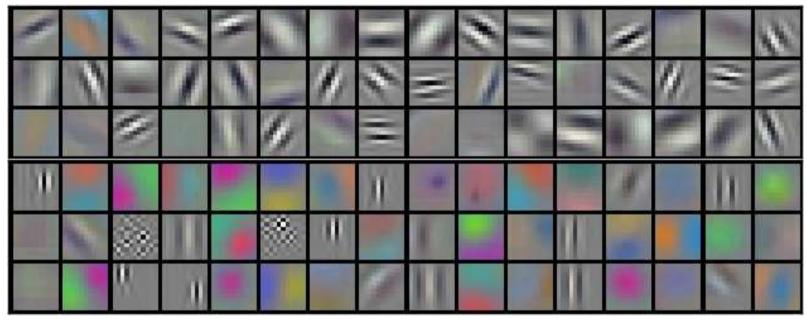
- results on test set
 - top-1-error: 37%
 - top-5-error: 17%
- newer approaches:
 - top-5-error: <5%(better than humans)



Taken from:

http://image-net.org/challenges/LSVRC/2012/supervision.pdf

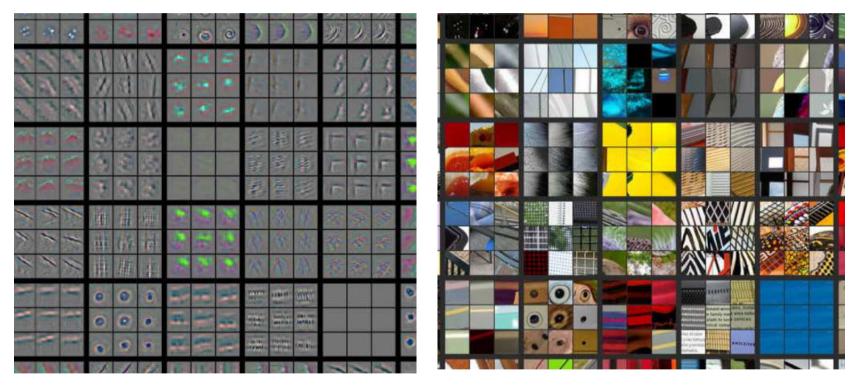
- which features are learned in hidden layers?
 - 1. layer: gray level edges, color edges, blobs



Taken from: http://image-net.org/challenges/LSVRC/2012/supervision.pdf

• which features are learned in hidden layers?

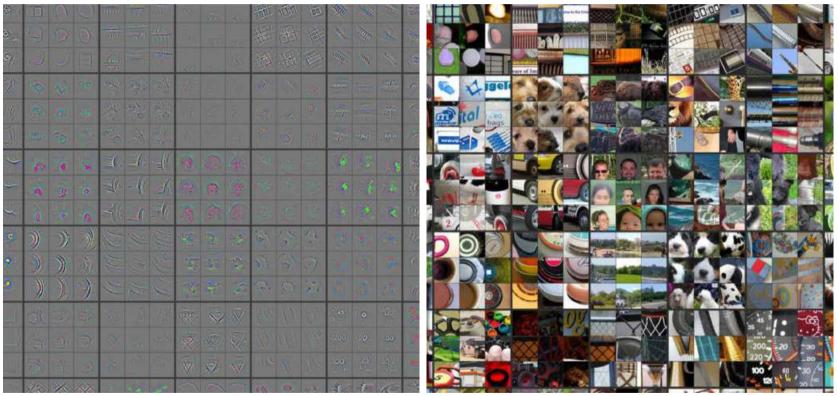
2. layer: corners, round structures



Taken from:

• which features are learned in hidden layers?

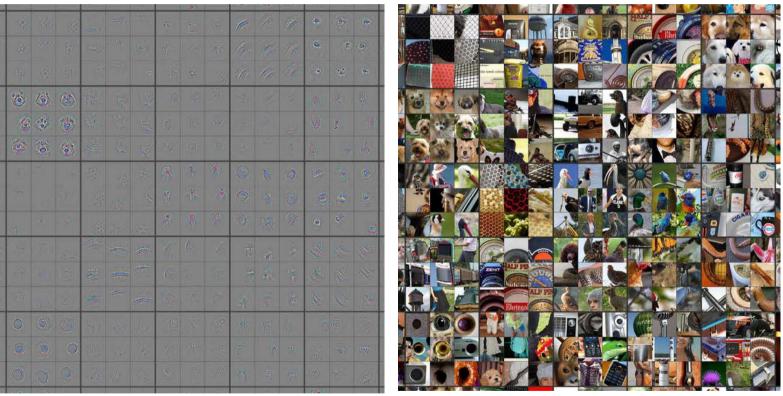
3. layer: shapes, gratings



Taken from:

• which features are learned in hidden layers?

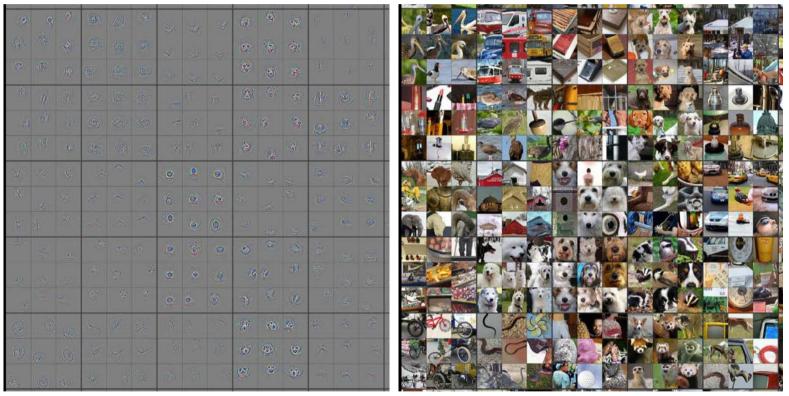
4. layer: textured geometries



Taken from:

• which features are learned in hidden layers?

5. layer: objects



Taken from:

- From layer to layer...
 - features become more and more geometrically complex
 - features become more and more independent of position
 - features become more and more inpendent of pattern size
 - features become more and more specific

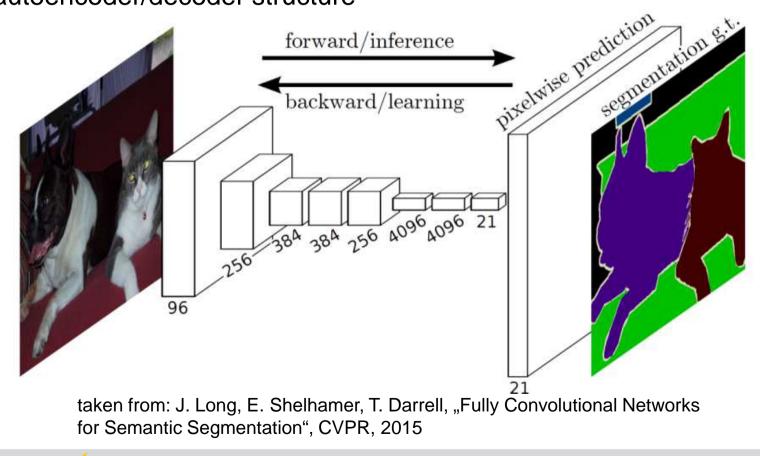
APPLICATION EXAMPLES

Lecture in Machine Vision - 28

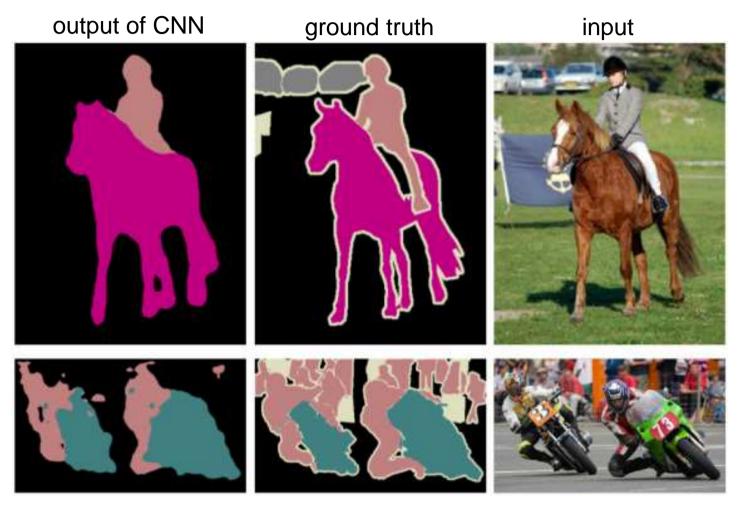
Scene Labeling

• segment the image

- classify every pixel
- autoencoder/decoder structure

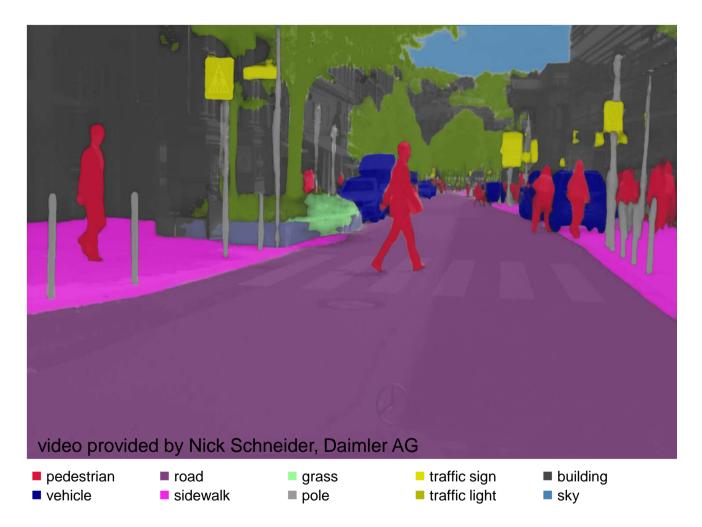


Scene Labeling

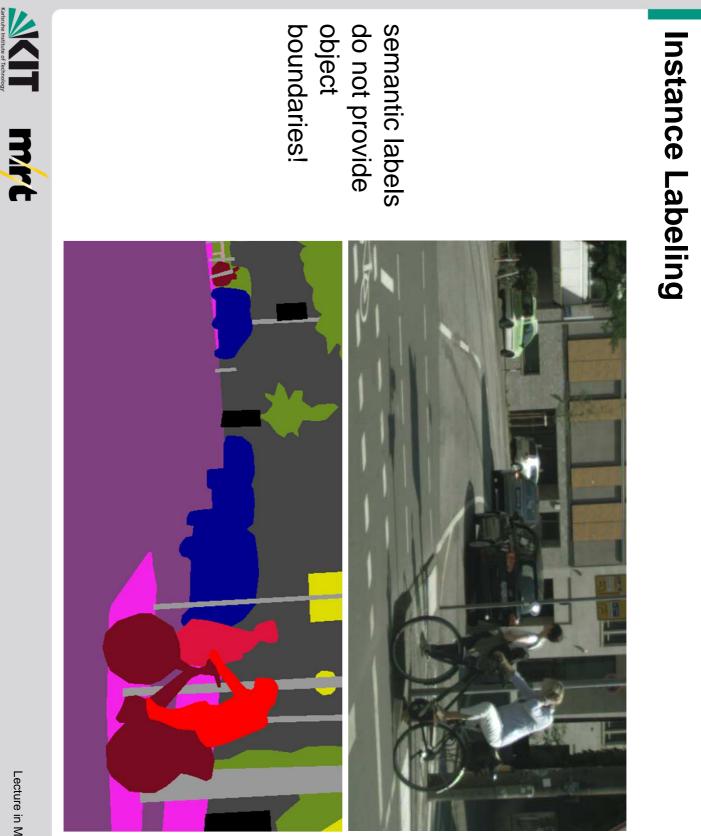


taken from: J. Long, E. Shelhamer, T. Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR, 2015

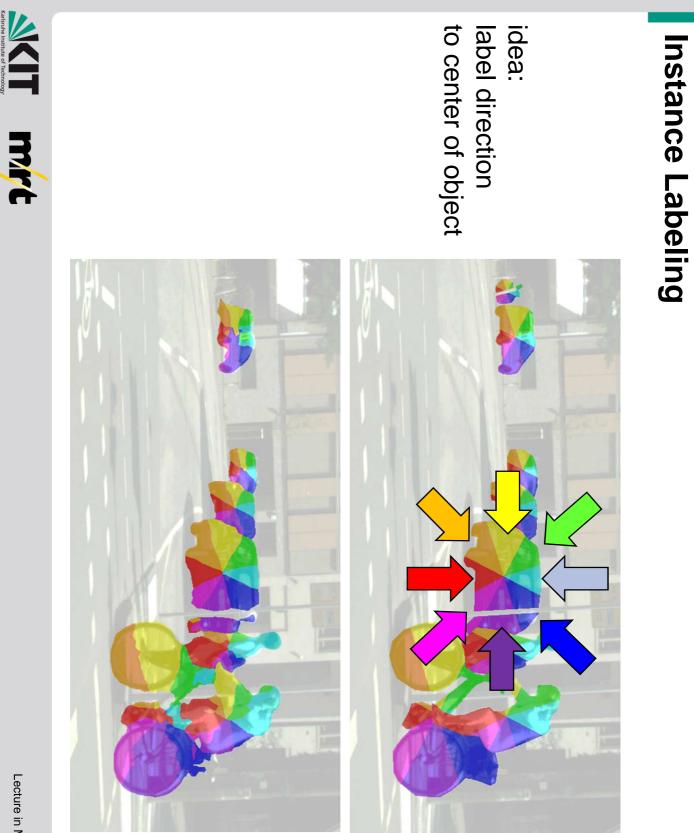
Scene Labeling



best performance on *Cityscapes* dataset > 80% accuracy

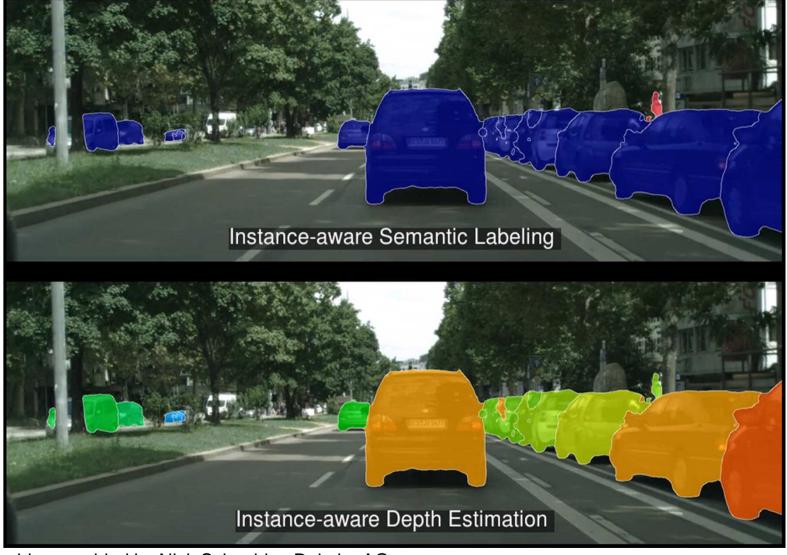


taken from: J. Uhrig, M. Cordts, U. Franke, T. Brox, Pixel-level encoding and depth layering for instance-level semantic segmentation, Germ. Conf. on Pattern Recognition, 2016/ provided by Nick Schneider, Daimler AG



taken from: J. Uhrig, M. Cordts, U. Franke, T. Brox, Pixel-level encoding and depth layering for instance-level semantic segmentation, Germ. Conf. on Pattern Recognition, 2016/ provided by Nick Schneider, Daimler AG

Instance Segmentation



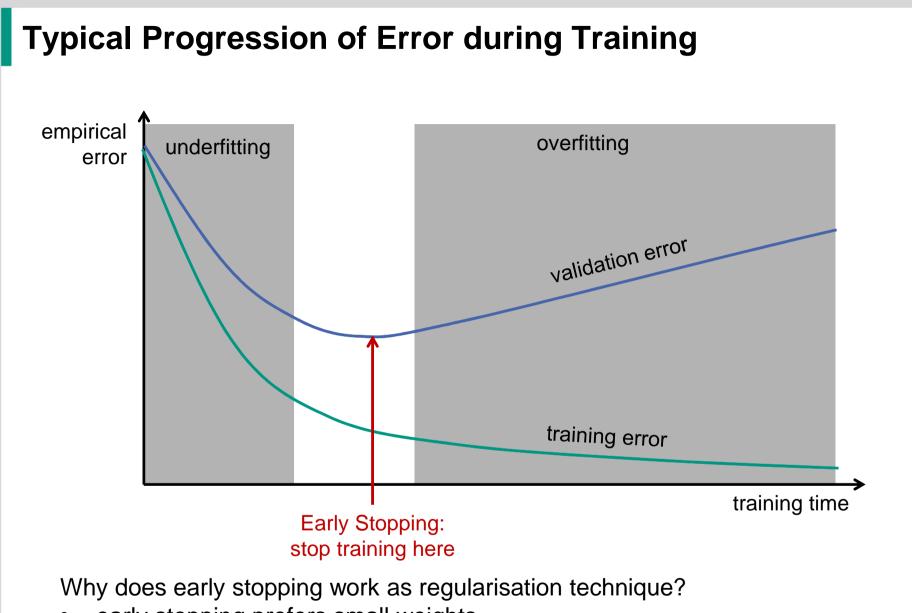
video provided by Nick Schneider, Daimler AG

TECHNIQUES FOR DEEP LEARNING

Lecture in Machine Vision - 35

Principles for Training MLPs

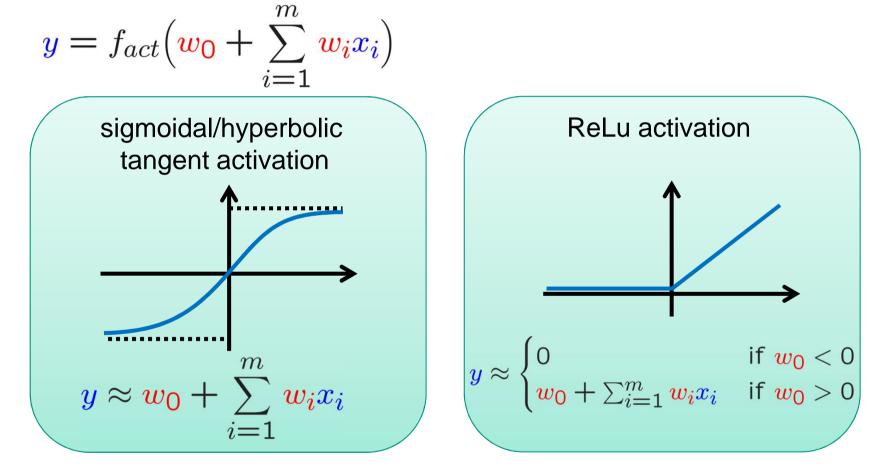
- There's no data like more data! – remind slides 10/60-62 on data tuning
- rigorous validation of training process
- regularisation of training process
 - early stopping
 - weight decay/L2 regularisation
 - dropout
 - stochastic gradient descent
 - multi task learning
 - use pretrained networks
- reuse of practical knowledge (of others)
 - successful network structures
 - successful training processes



- early stopping prefers small weights
 small weights means little non linearity (see
- small weights means little non-linearity (see next slide)

Regularisation by Small Weights

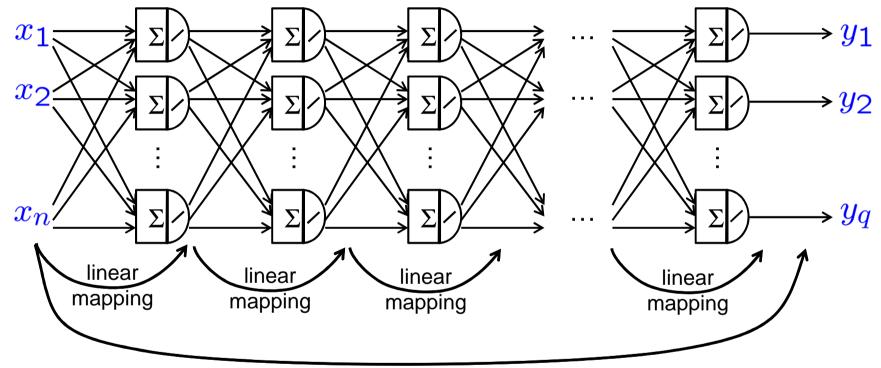
assume perceptron with small absolute weights



 \rightarrow small weights foster linear behavior of perceptrons

Regularisation by Small Weights

• assume fully connected network with linear activation

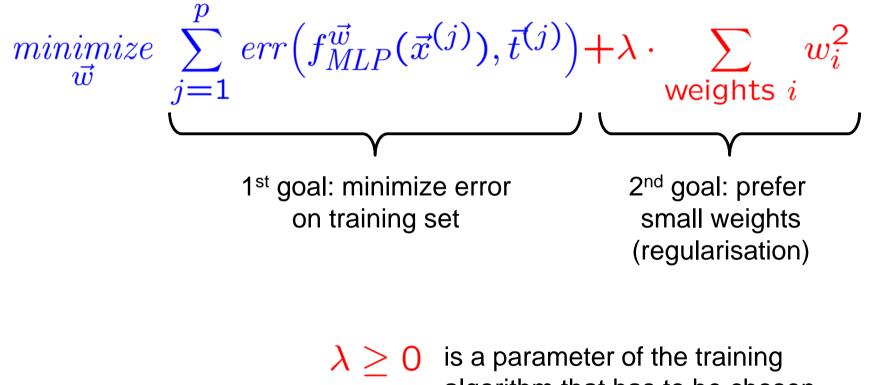


linear mapping independent of number of layers

- \rightarrow linear behavior of perceptrons reduces non-linear expressiveness
- \rightarrow regularisation

Weight Decay / L2-Regularisation

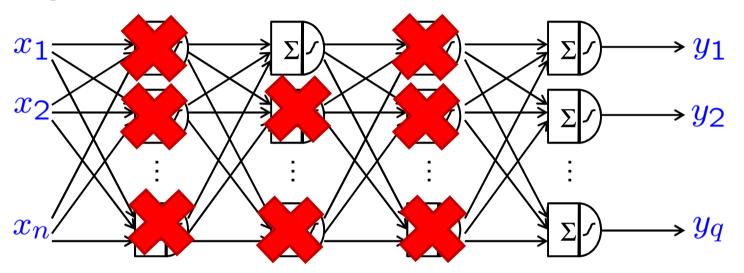
• extend goal of training by regulatisation term



algorithm that has to be chosen by trial and error

Dropout

regularization by randomly switching off perceptrons during training



- dropout forces the neural network to store relevant information in a distributed way
- dropout reduces overfitting

Modifications of Gradient Descent

• stochastic gradient descent

$$\vec{w} \leftarrow \vec{w} - \varepsilon \cdot \frac{\partial}{\partial \vec{w}} \sum_{j=1}^{p} err\left(f_{MLP}^{\vec{w}}(\vec{x}^{(j)}), \vec{t}^{(j)}\right) \\ \vec{w} \leftarrow \vec{w} - \varepsilon \cdot \frac{\partial}{\partial \vec{w}} \sum_{j \in S} err\left(f_{MLP}^{\vec{w}}(\vec{x}^{(j)}), \vec{t}^{(j)}\right) \\ \text{with } S \subseteq \{1, \dots, p\}$$

calculate gradient from all training examples

calculate gradient from subset of all training examples. Subsets typically cacle through all examples

advantages:

- speed up

- a little bit less overfitting

Modifications of Gradient Descent

• gradient descent with momentum

$$\Delta \vec{w} \leftarrow \boldsymbol{\alpha} \cdot \Delta \vec{w} - \varepsilon \cdot \frac{\partial}{\partial \vec{w}} \sum_{j \in S} err(f_{MLP}^{\vec{w}}(\vec{x}^{(j)}), \vec{t}^{(j)})$$
$$\vec{w} \leftarrow \vec{w} + \Delta \vec{w}$$

with $\alpha \ge 0$ a parameter that controls consistency of subsequent steps

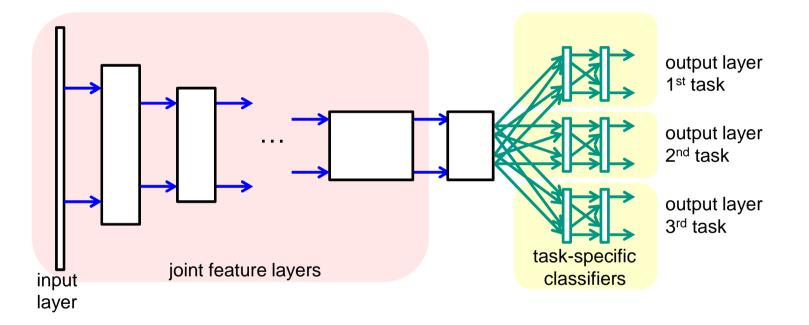
advantages:

- speed up in flat areas
- -less zig zagging

Lecture in Machine Vision - 43

Multi Task Learning

• idea: learn several related tasks in a single network example: scene labeling + instance labeling + depth estimation

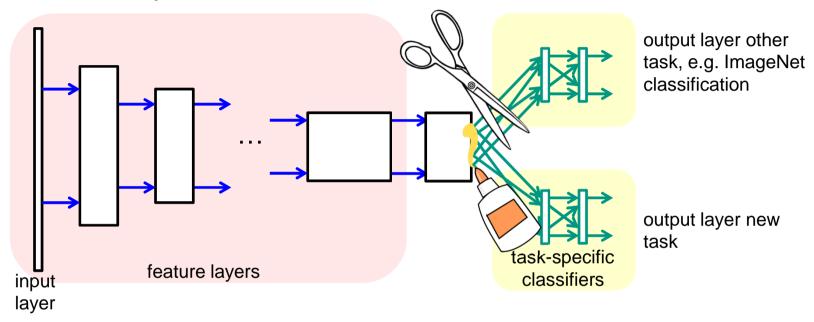


advantages:

- force network to develop common features in hidden layer
- reduce overfitting to a single task

Usage of Pre-Trained Feature Networks

• idea: reuse pre-trained network



- 1. train other task with large training set
- 2. throw away classification layers of other task
- 3. create new classification layers for new task
- 4. train weights of new classification layer while preserving feature layers

Popular Architectures

net	layers	kernel sizes	reference
LeNet5 (1998) (historical)	2 conv. layers 2 max pooling layers 2 fully conn. layers	5x5	Y. LeCun, L. Bottou, Y. Bengio, P. Haffner. <i>Gradient-based</i> <i>learning applied to document</i> <i>recognition.</i> Proc. of the IEEE, 1998
AlexNet (2012)	5 conv. layers 3 max pooling layers 3 fully conn. layers	3x3 – 11x11	A. Krizhevsky, I. Sutskever, G. E. Hinton. <i>Imagenet classification</i> <i>with deep convolutional neural</i> <i>networks</i> . NIPS 2012
VGG (2014)	13 conv. layers3 max pooling layers3 fully conn. layers	3x3 (1x1)	K. Simonyan, A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv 2014
ResNet (2015)	152 conv. layers (residual blocks) 2 pooling layers	3x3 (7x7)	K. He, X. Zhang, S. Ren, J. Sun. Deep residual learning for image recognition. CVPR 2016
GoogLeNet (2015)	9 inception blocks	1x1, 3x3, 5x5	C. Szegedy, et al. Going deeper with convolutions. CVPR 2015

Lecture in Machine Vision - 46

SUMMARY: DEEP LEARNING

Lecture in Machine Vision - 47

Pattern Recognition: the Complete Picture feature prediction c classifier extraction ensemble training & generalization classifiers generalization features ensembles smart (specific) SVM free ensemble validation HOG threshold bagging cross-validation decision tree boosting data tuning Haar I BP decision forest early stopping cascade randomization multi-class neural features neural network

• • • •

•...

• • • •

• . . .

Pattern Recognition: the Complete Picture cont.

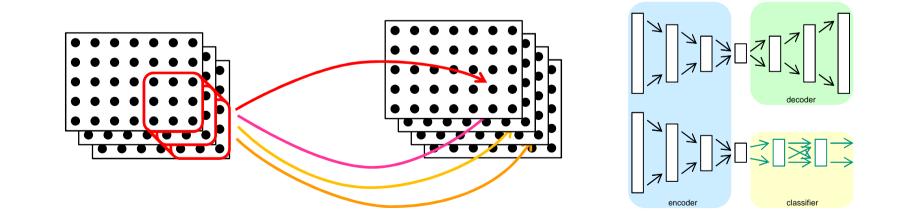
features

- smart (specific)
- HOG
- Haar
- LBP

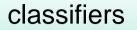
• • • •

neural features

- neural features
 - generated by autoencoder networks
 - generated by convolutional networks
 - neural features often perform better than "traditional" features (e.g. HOG) even if trained on different images



Pattern Recognition: the Complete Picture cont.

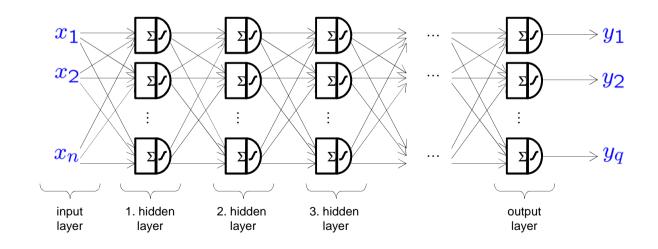


- SVM
- threshold
- decision tree
- cascade

•...

neural network

- artificial neural network
 - highly parameterized
 - nonlinear functions
 - build out of simple blocks (perceptrons)
 - layered layout



Pattern Recognition: the Complete Picture cont.

 generalization validation cross-validation data tuning early stopping randomization 	 early stopping monitor validation error stop training at minimum weight decay/L2-regularisation preference for small weights punish nonlinearity dropout randomly switch off percpetrons foster distributed representation multi task learning train related tasks with same network share feature layers reuse trained feature layers replace and retrain classification layers
	-

References

books and articles

I. Goodfellow, Y. Bengio, A. Courville. *Deep Learning*. MIT Press, 2016.
 online: http://www.deeplearningbook.org

extensive description of deep learning techniques

Y. LeCun, Y. Bengio, G. E. Hinton. *Deep Learning*. nature 521, pp. 436-444, 2015

brief overview paper, not very deep but good to get a rough idea

 L. Deng, D. Yu. *Deep learning: methods and applications*. Foundations and Trends in Signal Processing 7:3–4, pp. 197-387, 2014. online: http://ftp.nowpublishers.com/article/Details/SIG-039

extensive overview and introduction, focus on natural language processing

 Y. Bengio. Learning Deep Architectures for AI. Foundations and Trends in Machine Learning 2:1, pp. 1-127, 2009. online: http://www.nowpublishers.com/article/Details/MAL-006

extensive introduction and overview, does not contain newer developments

References

- toolboxes
 - Caffe (UC Berkeley), http://caffe.berkeleyvision.org
 simple to use deep learning engine, provides pretrained networks, good for beginners

- Tensorflow (Google), https://www.tensorflow.org

deep learning engine that allows more extensions of existing approaches, good for experienced persons

